Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Scoping calculation of nuclides migration in engineering barrier system for effect of volume expansion due to overpack corrosion and intrusion of the buffer material

; ; Ishiguro, Katsuhiko; Nakajima, Kunihiko*;

JNC TN8400 99-087, 41 Pages, 1999/11

JNC-TN8400-99-087.pdf:7.99MB

Corrosion of the carbon steel overpack leads to a volume expansion since the specific gravity of corrosion products is smaller than carbon steel. The buffer material is compressed due to the corrosive swelling, reducing its thickness and porosity. On the other hand, Buffer material may be extruded into fractures of the surrounding rock and this may lead to a deterioration of the planned functions of the buffer, including retardation of nuclides migration and colloid filtration. In this study, the sensitivity analyses for the effect of volume expansion and intrusion of the buffer material on nuclide migration in the engineering barrier system are carried out. The sensitivity analyses were performed on the decrease in the thickness of the buffer material in the radial direction caused by the corrosive swelling, and the change in the porosity and dry density of the buffer caused by both compaction due to corrosive swelling and intrusion of buffer material. As results, it was found the maximum release rates of relatively shorter half-life nuclides from the outside of the buffer material decreased for taking into account of a volume expansion due to overpack corrosion. On the other hand, the maximum release rates increased when the intrusion of buffer material was also taking into account. It was, however, the maximum release rates of longer half-life nuclides, such as Cs-137 and Np-237, were insensitive to the change of buffer material thickness, and porosity and dry density of buffer.

JAEA Reports

Extrusion analysis of buffer using diffusion model

Sugino, Hiroyuki; *

JNC TN8400 99-040, 75 Pages, 1999/11

JNC-TN8400-99-040.pdf:9.08MB

The buffer material that will be buried as a component of the engineered barriers system swells when saturation by groundwater. As a result of this swelling, buffer material may penetrate into the peripheral rock zone surrounding the buffer through open fractures. If sustained for extremely in long-period of time, The buffer material extrusion could lead to reduction of buffer density, which may in turn degrade the assumed performance assessment properties (e.g., permeability, diffusion coefficient) JNC has been conducted the study of bentonite extrusion into fractures of rock mass as a part of high level waste research. In 1997, JNC has reported the test results concerning buffer material extrusion and buffer material erosion. These tests have been done using test facilities in Geological Isolation Basic Research Facility. After 1997, JNC also conducted analytical study of buffer material extrusion. This report describes the analysis results of this study which are reflected to the H12 report. In this analysis, The diffusion coefficient was derived as a function of the swelling pressure and the viscosity resistance of the buffer materials. Thus, the reduction in density of buffer materials after emplacement in saturated rock was assessed. The assessment was made assuming parallel-plate radial fractures initially filled by water only. Because fractures in natural rock masses inevitably have mineral inclusions inside of them and fractures orientation leads to fractures intersecting other fractures, this analysis gives significantly conservative conditions with respect to long-term extrusion of buffer and possible decrease in buffer density.

JAEA Reports

None

PNC TJ1559 96-002, 239 Pages, 1996/03

PNC-TJ1559-96-002.pdf:7.79MB

None

JAEA Reports

None

; ; Takase, Hiroyasu*

PNC TN1410 92-092, 60 Pages, 1992/09

PNC-TN1410-92-092.pdf:2.48MB

no abstracts in English

JAEA Reports

None

PNC TN1410 91-079, 704 Pages, 1991/10

PNC-TN1410-91-079.pdf:23.64MB

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1